sábado, 16 de abril de 2011

Electrización por frotamiento

 
carga eléctrica de varillas por frotamiento
 Varillas de diferentes materiales frotadas con tela se acercan a trozos de algún material liviano tal como corcho, papel o semillas de grama. Se observa como dichos materiales son atraídos por las varillas debido a la carga eléctrica presente.


 
carga eléctrica de un globo por frotamiento
Se frota con un paño un globo inflado y se puede observar que atrae pequeños trozos de un material liviano. También se puede observar que se adhiere a una superficie, como por ejemplo el pizarrón.

Electrización por contacto
 
Carga eléctrica de un electroscopio por contacto
Varillas de diferentes materiales previamente cargadas por frotamiento le transmiten carga por contacto al electroscopio, la cual se detecta por la separación de las láminas del mismo.

Fundamentos de electrostática
electrostática es la rama de la física que estudia los fenómenos eléctricos producidos por distribuciones de cargas estáticas, esto es, el campo electrostático de un cuerpo cargado.
Históricamente, la electrostática fue la rama del electromagnetismo que primero se desarrolló. Con la postulación de la Ley de Coulomb fue descrita y utilizada en experimentos de laboratorios a partir del siglo XVII, y ya en la segunda mitad del siglo XIX las leyes de Maxwell concluyeron definitivamente su estudio y explicación permitiendo demostrar cómo las leyes de la electrostática y las leyes que gobernaban los fenómenos magnéticos pueden ser estudiados en el mismo marco teórico denominado electromagnetismo.
La existencia del fenómeno electrostático es bien conocido desde la antigüedad, existen numerosos ejemplos ilustrativos que hoy forma parte de la enseñanza moderna; como el de comprobar como ciertos materiales se cargan de electricidad por simple frotadura y atraen, por ejemplo, pequeños trozos de papel o pelo a un globo que previamente se ha frotado con un paño seco.

Electricidad estática
La electricidad estática es un fenómeno que se debe a una acumulación de cargas eléctricas en un objeto. Esta acumulación puede dar lugar a una descarga eléctrica cuando dicho objeto se pone en contacto con otro.
Antes del año 1832, que fue cuando Michael Faraday publicó los resultados de sus experimentos sobre la identidad de la electricidad, los físicos pensaban que la "electricidad estática" era algo diferente de las otras cargas eléctricas. Michael Faraday demostró que la electricidad inducida desde un imán, la electricidad producida por una batería, y la electricidad estática son todas iguales.
La electricidad estática se produce cuando ciertos materiales se frotan uno contra el otro, como lana contra plástico o las suelas de zapatos contra la alfombra, donde el proceso de frotamiento causa que se retiren los electrones de la superficie de un material y se reubiquen en la superficie del otro material que ofrece niveles energéticos más favorables, o cuando partículas ionizadas se depositan en un material, como por ejemplo, ocurre en los satélites al recibir el flujo del viento solar y de los cinturones de radiación de Van Allen. La capacidad de electrificación de los cuerpos por rozamiento se denomina efecto triboeléctrico, existiendo una clasificación de los distintos materiales denominada secuencia triboeléctrica.
La electricidad estática se utiliza comúnmente en la xerografía, en filtros de aire, y algunas pinturas de automoción. Los pequeños componentes de los circuitos eléctricos pueden dañarse fácilmente con la electricidad estática poy. Los fabricantes usan una serie de dispositivos antiestáticos para evitar los daños.

Aislantes y conductores
Los materiales se comportan de forma diferente a la hora de adquirir una carga eléctrica. Así, una varilla metálica sostenida con la mano y frotada con una piel no resulta cargada. Sin embargo, sí es posible cargarla cuando al frotarla se usa un mango de vidrio o de ebonita y el metal no se toca con las manos al frotarlo. La explicación es que las cargas se pueden mover libremente entre el metal y el cuerpo humano, mientras que el vidrio y la ebonita no permiten hacerlo, aislando la varilla metálica del cuerpo humano.
Esto se debe a que en ciertos materiales, típicamente en los metales, los electrónes más alejados de los núcleos respectivos adquieren fácilmente libertad de movimiento en el interior del sólido. Estos electrones libres son las partículas que transportarán la carga eléctrica. Al depositar electrones en ellos, se distribuyen por todo el cuerpo, y viceversa, al perder electrones, los electrones libres se redistribuyen por todo el cuerpo para compensar la pérdida de carga. Estas sustancias se denominan conductores.
En contrapartida a los conductores eléctricos, existen materiales en los cuales los electrones están firmemente unidos a sus respectivos átomos. En consecuencia, estas sustancias no poseen electrones libres y no será posible el desplazamiento de carga a través de ellos. Al depositar una carga eléctrica en ellos, la electrización se mantiene localmente. Estas sustancias son denominadas aislantes o dieléctricos. El vidrio, la ebonita o el plástico son ejemplos típicos.
La distinción entre conductores y aislantes no tiene nada de absoluto: la resistividad no es infinita (pero sí muy grande), y las cargas eléctricas libres, prácticamente ausentes de los buenos aislantes, pueden crearse fácilmente suministrando la cantidad adecuada de energía para separar a un electrón del átomo al que esté ligado (por ejemplo, mediante irradiación o calentamiento). Así, a una temperatura de 3000 K todos los materiales son conductores.
Entre los buenos conductores y los dieléctricos existen múltiples situaciones intermedias. Entre ellas destacan los materiales semiconductores por su importancia en la fabricación de dispositivos electrónicos que son la base de la actual revolución tecnológica. En condiciones ordinarias se comportan como dieléctricos, pero sus propiedades conductoras se alteran mediante la adición de una minúscula cantidad de sustancias dopantes, consiguiendo que el material semiconductor tenga las propiedades conductoras necesarias con la aplicación de un cierto potencial eléctrico.
Ciertos metales adquieren una conductividad infinita a temperaturas muy bajas, es decir, la resistencia al flujo de cargas se hace cero. Se trata de los superconductores. Una vez que se establece una corriente eléctrica en un superconductor, los electrones fluyen por tiempo indefinido.

Carga inducida
La carga inducida se produce cuando un objeto cargado repele o atrae los electrones de la superficie de un segundo objeto. Esto crea una región en el segundo objeto que está con una mayor carga positiva, creándose una fuerza atractiva entre los objetos. Por ejemplo, cuando se frota un globo, el globo se mantendrá pegado a la pared debido a la fuerza atractiva ejercida por dos superficies con cargas opuestas (la superficie de la pared gana una carga eléctrica inducida pues los electrones libres de la superficie del muro son repelidos por los electrones que ha ganado el globo al frotarse, creando una superficie de carga positiva en la pared, que luego atrae a la superficie del globo).

Carga por fricción
En la carga por fricción se transfieren electrones por la fricción del contacto de un material con el otro. Aun cuando los electrones más internos de un átomo están fuertemente unidos al núcleo, de carga opuesta, los más externos de muchos átomos están unidos muy débilmente y pueden desalojarse con facilidad. La fuerza que retiene a los electrones exteriores en el átomo varia de una sustancia a otra. Por ejemplo los electrones son retenidos con mayor fuerza en el hule que en la piel de gato y si se frota una barra de aquel material contra la piel de un gato, se transfieren los electrones de este al hule. Por consiguiente la barra queda con un exceso de electrones y se carga negativamente. A su vez, la piel queda con una deficiencia de electrones y adquiere una carga positiva. Los átomos con deficiencia de electrones son iones, iones positivos porque su carga neta es positiva. Si se frota una barra de vidrio o plástico contra un trozo de seda tienen mayor afinidad por los electrones que la barra de vidrio o de plástico; se han desplazado electrones de la barra hacia la seda.

Carga por inducción 

Se puede cargar un cuerpo por un procedimiento sencillo que comienza con el acercamiento a él de una varilla cargada. Considérese la esfera conductora no cargada, suspendida de un hilo aislante. Al acercarle la varilla cargada negativamente, los electrones de conducción que se encuentran el la superficie de la esfera emigran hacia el lado lejano de esta; como resultado, el lado lejano de las esfera se carga negativamente y el cercano queda con carga positiva. La esfera oscila acercándose a la varilla, porque la fuerza de atracción entre el lado cercano de aquella y la propia varilla es mayor que la de repulsión entre el lado lejano y la varilla. Vemos que tiene una fuerza eléctrica neta, aun cuando la carga neta en las esfera como un todo sea cero. La carga por inducción no se restringe a los conductores, si no que se puede presentar en todos los materiales.
Aplicaciones
La electricidad estática se usa habitualmente en xerografía donde un pigmento de polvo (tinta seca o toner) se fija en las áreas cargadas previamente haciendo visible la imagen impresa.
En electrónica, la electricidad estática causa numerosos daños a los componentes por lo que los operarios han de tomar medidas para descargar la electricidad estática que pudieran haber adquirido. Esto puede ocurrir a una persona por frotamiento de las suelas de los zapatos (de materiales como la goma) contra suelos de tela o alfombras.
En aviación, al aterrizar un avión por seguridad se debe proceder a su descarga. En los automóviles también puede ocurrir la electrificación al circular a gran velocidad en aire seco (el aire húmedo conduce mejor las cargas), por lo que también necesitan medidas de seguridad para evitar las chispas eléctricas.
Se piensa que la explosión de un cohete en el 2003 en Brasil se debió a chispas originadas por electricidad estática.

Conceptos matemáticos fundamentales 

La ley de Coulomb
La ecuación fundamental de la electrostática es la ley de Coulomb, que describe la fuerza entre dos cargas puntuales Q1 y Q2. Dentro de un medio homogéneo como es el aire, la relación se expresa como:

                     F= K . q1 . q2 
                                 
La ley de coulomb es utilizada para calcular la fuerza de interacción entre dos cargas eléctricas que se encuentran separadas a una distancia d.
Es directamente proporcional al producto de dichas cargas, e inversamente proporcional al cuadrado de la distancia que las separa.
Para que la unidad de fuerza sea el newton debe multiplicarse por una constante K
K = 9.10 N.m²/c²    

Unidades
[F] = N (newton)
[q] = c (coulomb)
[d] = m (metros)

No hay comentarios: